Info

Multiple Sclerosis Discovery: The Podcast of the MS Discovery Forum

Your independent source of news and information on research in multiple sclerosis and related diseases.
RSS Feed
Multiple Sclerosis Discovery: The Podcast of the MS Discovery Forum
2018
April
January


2016
September
August
July
June
May
April
March
February
January


2015
December
November
October
September
August
July
June
May
April
March
February
January


2014
December
November
October
September
August
July
June


All Episodes
Archives
Now displaying: October, 2015
Oct 27, 2015

[intro music]

Host – Dan Keller

Hello, and welcome to Episode 58 of Multiple Sclerosis Discovery, the podcast of the MS Discovery Forum. I’m your host, Dan Keller.

A group of people are calling for a big change in improving care for people with MS. There may be no cure for MS yet, but there are a lot of ways to improve their outcomes. In this podcast, one of the ringleaders, Dr. Gavin Giovannoni, talks about a new push to use long-term brain health as a goal in MS treatment.

The new report, called Brain Health, makes the point that time matters in MS. The authors draw on more than 300 research studies to show evidence that brain tissue can be preserved with early and effective treatment, and regular monitoring of disease activity. The report urges patients, physicians, health care payers, and policy makers to support the goal of life-long brain health.

This podcast gives you the main take-home points from the Brain Health initiative, launched at the recent MS meeting in Barcelona, Spain. We will have extra podcasts for you in the coming weeks about other ways that evidence from research can be translated now into better MS outcomes.

But first, here are some new items in the MS Discovery Forum.

In the discussion section, a team of graduate students wants to hear from people with MS and their families. The team is from Santa Clara University, located in the heart of Silicon Valley in California. They have a class project to design a software product to assist people impacted by MS. Help them out by completing their survey.

Coming up on our meetings and events list is next week’s World Congress of Neurology in Santiago, Chile. MSDF will be there gathering new podcast interviews. If you, too, will be at the conference and would like to meet with us – or if you’re interested in being interviewed about your research for a future podcast – please email us at editor@msdiscovery.org.

The meeting list includes many specialty conferences and seminars of all the different kinds of scientific expertise that goes into understanding MS, from immunology to myelin biology, genetics, and brain and spinal cord imaging. Please add your meetings, workshops, and seminars. This is just one of the ways that MSDF shares information across the many different specialty areas to advance treatments for MS. Help us by adding other MS-research-related events. It’s free to post.

Our Drug-Development Pipeline contains 44 investigational and approved agents for MS. Last week, we added results from one new trial, we updated subject matter from four other trials, and we added eight other pieces of information to the database. One update summarizes findings gathered from a 15-year follow-up visit for participants in the PRISMS interferon beta-1a trial.

[transition music]

And now to our interview with Dr. Gavin Giovannoni, head of neurology at Barts and The London School of Medicine and Dentistry in the U.K. We spoke with him at the recent European Committee for Treatment and Research in MS, or ECTRIMS, meeting in Barcelona about the Brain Health report that was launched at the meeting. The main thrust of the report – aimed at a broad audience of MS community members – is that time matters in MS.

Interviewer – Dan Keller

In terms of the Brain Health report, can you give me a broad overview of what the intent was and what you hope to accomplish?

Interviewee – Gavin Giovannoni

I mean, the real issue is to try to raise awareness and use it as a platform for trying to get policy changed. And the target audience is just the MS community, as well as health care providers, payers, politicians, etc. And one of the things we’re beginning to realize now as we have more effective therapies, and we begin to learn more about MS, is that we are compromising the health of our patients by not treating them quickly enough or manage them quickly enough. I mean, there are large delays in patients being diagnosed, getting access to treatment, and when they’re on treatment, they’re not being monitored actively.

And there’s now emerging data that if you’re on a therapy, and you’ve got ongoing disease activity, you don’t do very well in the long-term. So the idea is to try and encourage people to treat to a target, monitor, and escalate rapidly. So it’s really trying not to waste time, too, essentially. And we borrow the term, “Time is Brain” from “Time Matters” from the stroke, where we know that, you know, every minute counts. And we would like to get the attitude across to people who are treating MS that every week, every month counts.

MSDF

At the initial diagnosis, how quickly should things move along, scanning, treatment?

Dr. Giovannoni

I mean, we’ve got guidelines within our socialist healthcare system, the NHS, to get the diagnostic phase over with in a four-week period. If you’ve got the disease, it’s very anxiety-inducing, the whole process. In reality, you’d like to get it over with in days. And then you need to start the counseling and education process. And I think you can’t rush people onto therapy within days because the holistic approach is people got to understand their disease, the implications of the illness, the prognosis. They’ve got to come to terms with it as well before you can actually start discussing the implications of therapy, which may be life-long. So I’m not talking about this is like stroke – you have that thirteen minutes – I think you need to try and shorten the whole process and be active about it, not be passive.

Most clinicians in the world now just monitor their patients clinically. They don’t monitor them with MRI scans. They just wait for them to break through. Sometimes they accept minor relapses as just being part of the disease, and I think now that we’ve got more effective therapies, we shouldn’t be accepting any breakthrough activity. We should be escalating people to more effective therapies. And the data is becoming really strong that active disease, in the form of relapses or MRI activity, does portend a poor prognosis, so you want to switch it off.

MSDF

The report laid out some specific goals. Can you delineate some of those?

Dr. Giovannoni

The main goal is speeding up the whole process, so a rapid diagnosis, rapid initiation of treatment, monitoring, rapid escalation or possibly even flipping the pyramid – if they’ve got a bad prognostic profile, give the more effective therapies. Also, collect data so by monitoring, you hopefully will change behavior. And then the other thing that’s hidden is the cost effectiveness of these treatments. So, we need to make systems available to provide these drugs at cost effective prices, particularly in countries that are resource poor. It’s fine talking about North America and Europe – relatively wealthy areas of the world – where we have insurance systems to pay for these expensive new emerging therapies. But if you just to any of the developing countries, people with the disease don’t have access to disease-modifying treatments. We’re just letting the disease run its natural course, and I find that very upsetting.

There’s a whole literature and emerging dataset on brain health from, mainly, the dementia – Alzheimer's field – and some of it’s applicable to MS: getting patients to stop smoking; they must exercise regularly, try to avoid drugs that affect cognition, avoid excessive alcohol, sleep properly. Comorbidities must be managed actively. By that I mean hypertension, diabetes, etc. So there’s all that lifestyle, comorbidity issues that also need to be focused on. It’s basically making neurologists and healthcare professionals aware that there’s more to the brain in MS than just inflammation. We need to think of it holistically and take it seriously.

MSDF

What do you see as some of the barriers to implementing all these things that you’re recommending?

Dr. Giovannoni

The barriers I wish I could answer it easily. I mean, we know that there’s slow adoption of innovation. Certain fields are more slow at adopting innovation than others, and I think neurologists, intrinsically, are quite conservative. And up until we had therapies in MS, we were just diagnosticians and giving prognoses. Now that we’ve got treatments, we need to adapt to the fact that we’ve got therapies that can make a difference to people with MS. So the slow adoption is attitude, culture, and regulatory hurdles. There’s cost hurdles. Health insurance companies don’t pay for our monitoring, in large parts of the world, so you’re going to have to fight with them to be able to monitor with MRI scans. Patients themselves – try and nudge them to stop smoking and eat properly and exercise. It’s easier said than done. I mean, this is a global population issue, and you know, why should people with MS be any different to the general population. So it’s not easy. We need to think creatively about how we get this done.

MSDF

But it sounds like nihilism should be passé, if in the past, all you could do was diagnose and hope for the best. Now that’s really not the situation.

Dr. Giovannoni

Yes, but I think there’s another form of nihilism. And so in the past, we had therapeutic nihilism where we didn’t give any therapies. I think we’ve got a form of subliminal nihilism in the sense; we put people on less effective therapies. We’re not monitoring them, but their disease remains active. I call it smoldering MS. Unless we monitor with sensitive MRI techniques, possibly other monitoring, we’re not picking up the smoldering MS. And so I think we’re potentially leaving a whole generation of people with smoldering MS to obviously a better outcome than they would have had with no therapy, but not as good an outcome if they would be as connected to more effective therapies.

So that the subliminal nihilism, I just thought about that term, it kind of captures what I’m trying to, because, you know, what we see affects behavior. If we don’t see it, we don’t change our behavior. So part of this report is to make people observe, measure, monitor. And if they see activity, hopefully, it’ll change their behavior.

MSDF

In so many specialties, people say, well, I don’t treat lab values. I don’t treat images. I treat patients. But in this case, it seems like you do intervene when there is an imaging change.

Dr. Giovannoni

Yes, because we now have data, so this has got to be evidence-driven. And we’re not saying every recommendation in the policy report’s got unclad evidence about it. There is some weakness in the evidence base, but we think the evidence base is strong enough to make the recommendations. And we’ve actually put into the report that where there isn’t enough evidence, we need to generate more evidence. And to be honest with you, we need a population study comparing people managed with routine care versus patients treated to target with rapid escalation. MSBase has kind of done that without the MRI monitoring, because they don’t have MRI data in their database. They’re just looking at the clinical, letting people break through with relapses versus relapse-free, in those that are rendered activity-free clinically, do much, much better. And I think that tells us that if we were using MRI, it will even be better. So at least we know that MRI activity is a surrogate for relapses.

And there’s also scientific principle. We know, under the microscope, inflammatory lesions are not benign. They’re associated with transected axons, neuronal loss, etc. So it’s hard to deny the scientific principle of allowing lesions to continue to be active. To me it makes no biological sense. And this is not new. We’re just stealing the ideas from rheumatology and nephrology. They treat to target. They try and suppress inflammation as much as possible, and they’ve had incredible success. And they didn’t do it from an evidence base; they did it from a scientific principle.

And, as they collected their data in registries, they confirmed what the science showed. Long-term follow-up with these patients has shown that if you treat to target in rheumatoid arthritis and with rapid escalation, you protect joints. And joint replacements now in rheumatoid patients has plummeted by more than 80 percent.

I think our metric will have to be walking sticks and wheelchairs. We’ll see the use of walking sticks and wheelchairs plummet. Maybe employment – that’s the other thing we’re trying to highlight is most of the early disability in MS is not physical, it’s cognitive. And the early unemployment rates that occur before people become physically disabled are driven by cognitive problems which manifest as cognitive fatigue. So, you know, what we’re trying to do is also shift people’s attention away from just physical disability and think about cognition, which is an early disability. And hopefully, if we can treat people as early as possible, we’ll protect their cognition and allow them to continue working. So maybe the metric should be employment, as one of the metrics.

MSDF

So many reports in all areas come out and they’re sort of one-shot deals. Do you have a plan for giving this thing legs so that it’s not just buried once it came out?

Dr. Giovannoni

Yes, so we’ve got a whole lot of initiatives following on this. We’ve put together a grant application package. We’ve got a dissemination plan, both at a regional and international level. We’ll also want it connected to audit tools, so provide some audit tools where you can actually audit—measure—what we’re trying to achieve and, hopefully, use that as a quality metric. We think we if can start measuring, people will change their behavior. We also want to create an audit tool for people with MS to audit their own service. So in other words, they will go in and say, am I being monitored? How am I being monitored, just clinically or with MRI? And ask the right questions, and, hopefully, activating patients to ask their clinicians to be monitored may also change behavior.

We don’t want it to be a name and shame type thing. We want it to be a positive thing, by measuring, we’ll change behavior, so that’s what we want to do. The only thing, though, it can’t be done quickly. We need to get buy in from the whole community, so we’ll have to have an engagement program to get there. Get a competition going, international competition where people can provide creative ideas to try and help with viral dissemination. So get an infographic or a movie or a play or a book or a poem, something that can go viral. And then we’re going to, hopefully, have funding to update the report.

We are going to have a very active website where people can download the report. And we’re going to try and create content around Brain Health. Another thing we’re going to be doing is looking for funding to translate it into other languages. We’ve already had requests from several non-English speaking nations for translations. So the Dutch want it translated. South America wants it in Spanish. We’ve had a request from the Japanese, Russians. And so if we can get it translated, we’re probably not going to get the whole document translated. We’re going to make executive summaries, one for patient focused, one for clinicians, one for policy makers. And we’ll, hopefully, get those translated into multiple languages.

MSDF

MSDF will put the link on the site so that people can access it in English now. Is there anything to add or we’ve missed?

Dr. Giovannoni

I think we’ve got to start changing the behavior of neurologists in the sense that we need to make them think of their responsibility for looking after people with MS’s brains. We tend to focus on making them relapse free. If we actually shifted the target away from being relapse free but maintaining brain health, so these people can age as normally as possible – we’re not trying to say that people with MS will age normally, but we need our brains for when we get older. So if they start taking responsibility for the holistic management of MS, I think we’ll get the momentum going where people will be much more actively managing MS.

[transition music]

MSDF

Thank you for listening to Episode 58 of Multiple Sclerosis Discovery. This podcast was produced by the MS Discovery Forum, MSDF, the premier source of independent news and information on MS research. MSDF’s executive editor is Carol Cruzan Morton. Heather McDonald curated the MSDF drug database updates. Msdiscovery.org is part of the nonprofit Accelerated Cure Project for Multiple Sclerosis. Robert McBurney is our President and CEO, and Hollie Schmidt is Vice President of Scientific Operations.

MSdiscovery.org aims to focus attention on what is known and not yet known about the causes of MS and related conditions, their pathological mechanisms, and potential ways to intervene. By communicating this information in a way that builds bridges among different disciplines, we hope to open new routes toward significant clinical advances.

We’re interested in your opinions. Please join the discussion on one of our online forums or send comments, criticisms, and suggestions to editor@msdiscovery.org.

For Multiple Sclerosis Discovery, I'm Dan Keller.

[outro music]

Oct 20, 2015

[intro music]

Host – Dan Keller

Hello, and welcome to Episode Fifty-Seven of Multiple Sclerosis Discovery, the podcast of the MS Discovery Forum. I’m your host, Dan Keller.

This week’s podcast comes to you from last week’s big MS meeting in Barcelona, Spain, with an interview with Dr. Timothy Vollmer, who gives his take on the early results of a large Phase 3 study of ocrelizumab for primary progressive MS. The experimental drug blocks circulating B cells.

We will have several extra meeting-related podcasts for you in the next two weeks. In the next one, Dr. Gavin Giovannoni talks about a new push to use long term brain health as a goal in MS treatment. And Dr. Vollmer will return in the coming weeks to discuss the Denver treatment experience with another B cell blocking drug, rituximab. But first, here are some new items in the MS Discovery Forum.

Every week MSDF lists the latest scientific papers related to MS with links to the abstracts on PubMed. Of nearly 100 new studies published last week, we selected three as editor’s picks.

Two of our editor’s picks come from a larger collection on MS in JAMA Neurology. One study reports on an equivalence clinical trial comparing a generic glatiramer acetate, Synthon, with Copaxone, the branded glatiramer acetate, for relapsing remitting MS. A global team of investigators found equivalent efficacy, safety, and tolerability in the randomized, controlled trial. The findings provide reassurance about well-made generics for patients and neurologists, say other researchers in an editorial. But the whole idea of generics is to make a dent in the skyrocketing costs of MS drugs, and the generic is priced at $63,000 a year instead of $65,000 and $74,000 for the two versions of the branded drug.

Another paper in the same JAMA Neurology checked to see what the vitamin D levels of nearly 1500 people treated with interferon beta-1B might say about the course of their disease. Higher vitamin D levels were associated with fewer new active lesions in the mostly white, mostly female patients with relapsing remitting MS, but there was no correlation with clinical disability or brain atrophy.

Our third editor’s pick is a paper investigating the cancer risk from cladribine compared to other MS disease modifying treatments. A large Phase 3 study showed the experimental drug to be highly effective in relapsing remitting MS, with nearly half of patients showing no evidence of disease activity after two years and two courses of the treatment. But it was refused a license by the European Medicines Agency in 2013. Now, based on their new meta-analysis of eleven studies, the authors say they cannot confirm nor deny a cancer risk, and that cladribine should be investigated further as an MS therapy.

Our drug development pipeline contains 44 investigational and approved agents for MS. Last week, we added results from two new trials, we updated information from 16 other trials, and we added 20 other pieces of information. Trial updates include findings about ocrelizumab’s ability to reduce relapses and minocycline’s capacity to reduce the risk of conversion to MS after an initial demyelinating event.

[transition music]

And now to our interview with Dr. Timothy Vollmer, Professor of Neurology and Medical Director of the Rocky Mountain MS Center at the University of Colorado in Denver. When we met at the European Committee for Treatment and Research in MS, or ECTRIMS, meeting in Barcelona, Dr. Vollmer laid out how results of the ORATORIO trial of ocrelizumab shed light on two hypotheses of what goes wrong in primary progressive MS, and which one is most likely.

Interviewee – Timothy Vollmer

There currently are two hypotheses for what drives primary progressive disease. One is that it’s like relapsing disease, and it’s driven by inflammation. And the other one is that it’s a noninflammatory disease that’s being driven by neurodegeneration and has a separate biology. Now that we have positive results from the ORATORIO study, which is a study of ocrelizumab which is an anti-CD20 monoclonal antibody that deletes B lymphocytes from circulation, given that this is the very first time we’ve ever succeeded, it’s telling us very important thing, and that is: inflammation does drive primary progressive MS.

And the other important message from here is that this study studied a significantly younger patient population with primary progressive MS than all the other studies. The mean age was around 44. The reason that’s important is because, epidemiologically, we see a decrease in inflammatory activity as a function of age, and older patients often don’t express any evidence of that. And so far, in all the primary progressive studies, especially the OLYMPUS trial, those patient populations don’t respond to anything. So it’s telling us that we can treat primary progressive MS, but you’ve got to start early.

Interviewer – Dan Keller

That seems to be the message overall in MS, in general, though.

Dr. Vollmer

Yes it is. And the reason is, is because MS results in an accelerated brain volume loss, and brain volume loss is going to translate into disability, at some point, for almost everybody. Maintaining brain volume so that you can age normally late in life is a critical goal, not just in MS, but in other neurological diseases.

MSDF

Does that brain volume loss or other changes in the brain relate to really the onset of the progressive phase?

Dr. Vollmer

The answer is yes and no. From a statistical standpoint, it’s very hard to sort of identify a specific point in the process of brain volume loss that you can say, okay, they’re going to transition into progressive disease. That’s probably due to the fact that the mechanisms that underlie reserve capacity in brains may vary a little bit from patient to patient, and that they have different capacity to compensate for this injury. The other complication is that MS, as a multifocal disease, is not necessarily distributed evenly throughout the nervous system, though. In some patients, they have a relatively small amount of disease, but it’s in the neck, and they’re still highly disabled. And because of that very complicated pattern for it, it is hard just to use one global measure to predict how patients are going to be from a disability standpoint.

MSDF

Do the results of the ORATORIO study give us more confidence in pursuing the B cell as an important effector in MS?

Dr. Vollmer

Absolutely. The converging data, now, both in progressive forms and in relapsing forms, says the B cell is playing a critical role. There are CD20-positive T cells, and so there’s still some discussion whether the drug may be having an effect on those, but in the most recent reports, it does decrease those with first administration, but then they recover very quickly. And at subsequent administrations of the anti-CD20, they’re not deleted. So that pattern suggests to me it’s not an effect on T cells, it’s an effect on B cells which remain suppressed for months after a single injection.

MSDF

CD20 is on B cells but, as I understand, not on plasmablasts or plasma cells. So what is the relative contribution of B cell biology versus just antibody?

Dr. Vollmer

A major difference is that plasmablasts and plasma cells are not very good antigen presenting cells. Whereas, B cells, if they can engage the antigen that their B cell receptor is targeted for, become extremely effective antigen presenting cells: the most effective antigen presenting cells in the body. And they can be about ten thousand times more effective that dendritic cells or macrophages. So that’s why I think that, given the fact that the most effective therapies we’ve currently studied right now are all B cell based therapies, I think it’s telling us is that the B cell is playing that critical role, and most likely, that is in both cytokine release and in antigen presentation in the brain.

MSDF

From the ORATORIO study, what more do you want to see? The data is just coming out, and they’re going to do a bunch of analyses. What sort of things should they be looking at?

Dr. Vollmer

Well, they have a number of other clinical measures, and I believe they also have some patient reported outcomes, so I’d be very interested to see if the patients actually perceive a benefit as measured by those PROs. They have the timed twenty-five foot walk out, which they reached and was statistically significant. They had sustained disability progression at both three and six months which was statistically significant. And they reported brain volume loss was decreased in the ocrelizumab treated patients and was statistically significant. We would like to know more about the inflammatory markers in the patients and the correlation between having baseline evidence of disease activity, such as a gadolinium enhancing lesion, and the probability of response to therapy.

MSDF

What about the time course of response to the therapy? It seems like it’s more rapid than you would expect if an insult sometime in the past led to what you see today. But the ocrelizumab results seem to be on a faster track than that.

Dr. Vollmer

Well, the reason I believe that is, is because, as I said before, they really pushed down the median age in their population to much younger patients. And again, in long term studies that have looked at gadolinium enhancing disease activity, we do see it in primary progressive disease. So it’s not true, in my view, that primary progressive MS patients have a different MRI pattern. In studies that actually controlled for observer bias, where the neurologist didn’t have a chance to look with an MRI scan, but made the decision whether it was progressive or not progressive disease based on clinical history, which is the only way that we really can do it, then the previously reported biases of having nonspecific noninflammatory MRIs disappears. And that paper was published about six years ago.

So, I think that we have a lot of built in biases, as a field, when you think about MS, and, unfortunately, those biases are often not supported by objective data. And yet, they do make their way into the literature, mainly because they don’t control for age. And when comparing progressive patients, relapsing patients, or primary progressive patients to relapsing patients the fundamental difference is progressive patients tend to be 10 to 15 years older on average than the relapsing patients they’re comparing them to. And it’s that age difference that explains most of the differences that people talk about. It’s not the fact they have a different form of the disease.

MSDF

Anything else to add on this that we’ve missed?

Dr. Vollmer

As I said, we need to get subset analysis out of the ORATORIO study to see just which age group and demographic the patients really got the most benefit. My suspicion is we’re going to again find it’s the younger patients that show the biggest effect, again emphasizing that starting early in the disease with therapy is a key issue. And, again, I think it’s going to argue that you need to use highly effective therapies as early as possible, in order to get the best effect.

MSDF

Very good, thank you.

Dr. Vollmer

Thank you.

[transition music]

MSDF

Thank you for listening to Episode Fifty-Seven of Multiple Sclerosis Discovery. This podcast was produced by the MS Discovery Forum, MSDF, the premier source of independent news and information on MS research. MSDF’s executive editor is Carol Cruzan Morton. Heather McDonald curated the MSDF drug database updates. Msdicovery.org is part of the nonprofit Accelerated Cure Project for multiple sclerosis. Robert McBurney is our President and CEO, and Holly Schmidt is Vice President of Scientific Operations.

Msdiscovery.org aims to focus attention on what is known and not yet known about the causes of MS and related conditions, their pathological mechanisms, and potential ways to intervene. By communicating this information in a way that builds bridges among different disciplines, we hope to open new routes toward significant clinical advances.

We’re interested in your opinions. Please join the discussion on one of our online forums or send a comments, criticisms, and suggestions to editor@msdiscovery.org.

For Multiple Sclerosis Discovery, I’m Dan Keller.

[outro music]

 

Oct 16, 2015

Transcript

[intro music]

Host – Dan Keller

Hello, and welcome to Episode Fifty-Six of Multiple Sclerosis Discovery, the podcast of the MS Discovery Forum. I’m your host, Dan Keller.

This week’s podcast features an interview with Dr. Gavin Giovannoni who discusses the first experimental drug to show some benefit in a progressive form of multiple sclerosis in a major trial. The drug is ocrelizumab, and the trial is called ORATORIO. But first, here are some new items in the MS Discovery Forum.

The ocrelizumab findings were the big news at last week’s large international MS meeting in Barcelona, Spain. Our Research Roundup highlights other breaking stories from the meeting. Stay tuned for more in the days to come. We’ll be rolling out in-depth stories on some research themes we followed at the meeting. And we will have some extra meeting-related podcasts for you in the next two weeks.

Every week, MSDF lists the latest scientific papers related to MS, with links to the abstracts on PubMed. Of 138 new studies published last week, we selected three as editor’s picks.

In one study, a British team found a new reason why remyelination fails in disease. When damaged axons lose their myelin sheath, as in multiple sclerosis, they strike up a conversation with immature myelin-making cells. The axons reach out with new synapses to order the cells to grow up and make new myelin. If axons can’t call for help, as also may happen in MS, the myelin-making cells cannot respond. The team made their discovery in rat brains. They also found new synapses and telltale signaling molecules in postmortem brain lesion samples from people with MS.

In another paper, a Spanish group looked at other factors that may block the brain’s ability to repair itself after inflammatory damage. A pair of molecules, known as semaphorins, may block myelin-making cells from coming to the rescue of damaged axons. The findings come from human tissue samples and may hold promise as targets for future treatment.

Our third editor’s pick paper looks at factors influencing the intention to exercise and the execution of exercise among people with multiple sclerosis. A Danish team did an extensive review of rehabilitation and sports medicine literature. They found that health professionals can help on both fronts.

Our Drug-Development Pipeline contains 44 investigational and approved agents for MS. Last week, we added two new findings from clinical trials, we updated information from another trial, and we added 10 other pieces of information to the database. The drugs with important additions are alemtuzumab, dalfampridine, fingolimod, glatiramer acetate, idebenone, natalizumab, and teriflunomide. One update summarizes the finding that fingolimod induces the expression of neuroprotective factors by human astrocytes.

[transition music]

And now to our interview with Dr. Gavin Giovannoni, head of neurology at Barts and The London School of Medicine and Dentistry in the U.K. We spoke with him at the recent European Committee for Treatment and Research in MS, or ECTRIMS, meeting in Barcelona about the Brain Health report that was launched at the meeting and about the ORATORIO trial of ocrelizumab in primary progressive MS. We'll cover the Brain Health report in future podcasts with him and other authors of the report. But today, Dr. Giovannoni lays out the methodology of ORATORIO, which may explain some of the very good reduction in disease progression, observed in this trial for the first time in primary progressive MS.

Interviewer – Dan Keller

In the ORATORIO trial, what was the aim, and I guess what's the big outcome?

Interviewee – Gavin Giovannoni

Well, the ORATORIO trial is essentially a phase III trial of depleting anti-CD20 monoclonal antibody called ocrelizumab in primary-progressive MS. As you're aware, almost every trial done in primary-progressive MS has been negative. And then the motivation behind the ocrelizumab trial was based on the rituximab trial; ocrelizumab is a follow-on and rituximab is more humanized, so that should come with fewer side effects like infusion reactions and anti-drug antibodies. In that rituximab trial, there was a subgroup of the population that responded. These were people that are younger and had MRI activity.

So when we designed the ocrelizumab ORATORIO trial, we tried to enrich the study for young people and people that were more active, more enhancing lesions, and we did that. So the population is younger, and the proportion of patients with gadolinium-enhancing lesions at baseline was about a quarter of them. And we also made sure that all the patients had an abnormal CSF spinal fluid. The reason for that is in the Copaxone glatiramer acetate trial, patients who didn't have an abnormal CSF behaved very differently to those with an abnormal CSF, so we wanted to make sure that we had a homogeneous population. And we made sure they had oligoclonal bands or raised IgG in the spinal fluid simply because we we're trying to target a B cell response; so those that are CSF-negative may not be responsive to a B cell therapy.

Lots of features of this trial that we try to wait to make it positive, so we're really, really excited about the results, that people on ocrelizumab had an approximately 25% reduction in confirmed disease progression on EDSS compared to patients on placebo. And it was an event-driven, so the trial wasn't designed to be a fixed time point, it was designed as soon as you got enough events; it was like an adaptive trial, so it was quite cleverly designed in that regard. So it's great news.

Now whether the trial was positive because ocrelizumab is a more effective therapy than the others, or because it's targeting something special like the B cell, at the moment is not known. The only way we're going to find that out is if we do another primary-progressive trial with another highly effective therapy and see what happens there. But this is fantastic news for people with progressive MS. If you follow any patient forums or blogs or whatever, the most frustrated, depressed group is the primary-progressive patients; they've been neglected for years, decades. I think that's the big news, we now will have a therapy which we can offer them.

The one unknown, though, is maybe this result has been driven by a particular subgroup, and I think the regulators and the payers will want to get that data from us. Because if it is driven by a particular subgroup, they may limit the license and the payment for that particular subgroup, the responder group. And so I can't talk to that yet, because most of the subgroup and post-hoc analyses haven't been done. But potentially maybe like the rituximab trial, there will be a proportion of the patients that have characteristic features that are more responsive to the drug, and drive the trial results compared to the other group. And if that is the case, then it's still good news regardless.

MSDF

As it stands now, it seems like the indication would be for people with abnormal CSF, oligoclonal bands, or elevated IgG. Is there any thought that this drug may work possibly by the same mechanism even if you're not seeing abnormal CSF?

Dr. Giovannoni

The spinal fluid tests aren't 100% perfect, so there are people who will have false-negative results. But I've always been a big proponent of the hypothesis that the oligoclonal response in the spinal fluid is something key to this disease. We see that response in infectious diseases like neurosyphilis, measles, rubella panencephalitis, herpes; it's really a signature of its common to infectious diseases, which is why I'm still a supporter of the hypothesis that MS may be an infectious disease. You do find that in a few other autoimmune diseases, particularly the paraneoplastic plastic syndromes, that it's a signature of an intrathecal B cell response. And this drug targets B cells.

One thing it doesn't target, though, it's the long-lived plasma cell, and so CD20 actually stops being expressed, even on plasmablasts, so as soon as you go from the mature B cell to plasmablast to plasma cells, you don't deplete those with anti-CD20. So we know from rituximab data that the oligoclonal bands persist, so we need longer punctures, you don't get rid of those. But until we have long-term followup, we don't know. Maybe drugs that target the plasmablast and the plasma cell will be more effective than rituximab. We don't have any of those drugs available in MS yet.

There's one that's being developed, it's anti-CD19; CD19 gets expressed onto the plasmablast and some plasma cells, and there are some specific markers for plasma cells. But if you gave those to people with MS, you'd probably deplete them of their antibody-producing cells and make them a gamma globulin anemic. Then you'd have to probably then start supplementing with gamma globulin, so it gets quite complicated. But at the moment, the drug will be licensed, I think, for continuous use every 6 months; it won't be induction therapy. Some of the data would suggest you could potentially use it as induction therapy, so, you know, do 2 years and then wait and see if the disease comes back. But the way the drug's been developed at the moment is for continuous maintenance use. There are some concerns; can you continue to use it in the B cell depletion forever? And that's going to have to be answered with the open-label extension studies.

MSDF

Since plasma cells persist and oligoclonal bands persist, if I understood you correctly, do you think that the pathology is mediated through antibody, or this depletion of B cells is acting in a different way, that the B cells are interacting either with T cells or on their own doing something?

Dr. Giovannoni

I mean, there is pretty good evidence from the pathology literature that antibodies are very important in MS. So whether or not you accept it, there is pathological classifications of the top 1 to 4. And there is antibody and complement activation in MS lesions, and there is emerging evidence that so-called grey matter lesions and subpial lesions on the surface are particularly driven by antibody and complement. So I do think they are pathogenic. And so you may get rid of the focal inflammatory lesions that appear to be T cell-driven, whereas the cortical subpial lesions may be antibody-driven. So you may be getting rid of one pathology and not all the pathologies, which is why I remain a little bit skeptical still about whether or not this anti-CD20-depleting antibody will be effective in the long-term. So we may need additional treatment to target plasma cells.

And what you've got to ask yourself really is what's driving those oligoclonal bands. We know they are highly selected, so they're not just there. They're oligoclonal, they've undergone selection by hypermutation, so there's some antigen driving them. They respond to something, and we just haven't been able to find out what they respond to. They are pathogenic, and if we do find the cause of MS, that will almost certainly begins to cause the disease. An analogy would be herpes encephalitis; if somebody's had a herpes infection, then you take those oligoclonal bands out and you absorb them against the antigen from herpes, you remove almost all the antibodies. So they are antigen-specific in the infectious space.

We've tried for years to find out what those bands react against in MS, and we haven't found it. There's several groups still working on it, and I would encourage them to continue working it, because that may be where the action is.

MSDF

The ORATORIO data was only begun to be analyzed very recently. You had mentioned that you were going to be doing subgroup analyses. Are there other analyses yet to come?

Dr. Giovannoni

I mean, the headline results are probably in main secondary outcomes, and there's less of tertiary outcomes. We need to do subgroup analyses trying to look at brain atrophy, the time course of the progressions. I'm very interested in second progressions, because I have this theory that early progressions in progressive disease is not driven by inflammation that occurs in this epoch, it's in the past; so inflammation a year or two ago is driving progression now. And so when you design these progressive trials, a large number of people progress early. And I think it's nothing to do with the trials because it's happened before the trial. So what you then need to do is look at progressions in the future to see if they flatline or stabilize. So there's lots of luck. I think we need to play around with the data, look at the first and second confirmed progressions, incorporate the brain MRI activity as the confounder. There's lots to do, tons to do. But it's good news. The excitement about those analyses are generated because you've got a positive result.

MSDF

Picking up on this idea that what you see today is the result of an insult that happened sometime before, what is the time course that you see using ocrelizumab in terms of benefit; is it so rapid that it questions whether what you said is what's operating?

Dr. Giovannoni

Yes, it's too rapid. When you see the survival curves, they go flat very early, so this is actually saying something else which is really surprising me, which is why I think some of the activity may be driven by an anti-inflammatory, because we know that anti-inflammatory drugs have an effect quite quickly. So that's why I'm suspicious that the positive result is driven by an inflammatory core of patients, and those with the more neurodegenerative or previous inflammation are unlikely to respond. That's my worry with the drug. But let's see what their subgroup analyses show.

MSDF

Anything we've missed or important to add on that?

Dr. Giovannoni

What I want to mention to people with the disease is they shouldn't overhype expectations. The simple reason is when you've got progressive disease you've already lost reserve, so that's why you're progressing. So in early relapsing disease, you make recovery from attacks because you've got ability to recover, a reserve. And so early on you stabilize or improve, and later on you slow down progression. So I'm trying to tell people with the disease if you do go into this therapy, don't expect to improve or get better. You're much more likely to progress more slowly, which you won't notice. It's hard in an individual to say they're progressing more slowly, or you'll plateau out and stabilize. I think that must be the expectation, rather than improvement. And I think we need to manage those expectations, that people may not at a personal level find a big dramatic response in terms of their disability on the drug.

MSDF

But this sounds like – getting back to the discussion of the Brain Health report – where you should diagnosis and treat rather quickly. At least now if someone comes in with primary-progressive, there may be at some point something to do from the start.

Dr. Giovannoni

Yeah. Well, it's like with any neurodegenerative disease, the sooner you treat the more you've got to protect, and the later you treat the less you've got to protect. So this would be a call to get primary-progressive disease diagnosed as soon as possible and treat as soon as possible. And if you look at the diagnostic delay in primary-progressive disease, it's probably worse than relapsing disease. People often go years before being diagnosed. So we're going to have to sharpen up the referral pathways and the diagnostic pathways in primary-progressive disease to get that timeless brain concept across there, too.

[transition music]

Thank you for listening to Episode Fifty-Six of Multiple Sclerosis Discovery. This podcast was produced by the MS Discovery Forum, MSDF, the premier source of independent news and information on MS research. MSDF’s executive editor is Carol Cruzan Morton. Heather McDonald curated the MSDF drug database updates. Msdiscovery.org is part of the nonprofit Accelerated Cure Project for Multiple Sclerosis. Robert McBurney is our President and CEO, and Hollie Schmidt is Vice President of Scientific Operations.

MSDiscovery.org aims to focus attention on what is known and not yet known about the causes of MS and related conditions, their pathological mechanisms, and potential ways to intervene. By communicating this information in a way that builds bridges among different disciplines, we hope to open new routes toward significant clinical advances.

We’re interested in your opinions. Please join the discussion on one of our online forums or send comments, criticisms, and suggestions to editor@msdiscovery.org.

For Multiple Sclerosis Discovery, I'm Dan Keller.

[outro music]

Oct 5, 2015

[intro music]

Host – Dan Keller

Hello, and welcome to Episode Fifty-Five of Multiple Sclerosis Discovery, the podcast of the MS Discovery Forum. I’m your host, Dan Keller.

This week’s Podcast features an interview with Dr. Michael Levy, who discusses the status of regenerative stem cell therapies for multiple sclerosis. But first, here are some new items in the MS Discovery Forum.

Our lead story last week looked at a way to prevent a rare but dangerous viral brain infection that can be a side effect of certain drugs. The risk of infection limits the people who can take natalizumab to prevent the inflammatory brain attacks of relapsing-remitting MS. Two new papers propose vaccinating people against the virus. Experts are still debating the underlying biology, but they say the approach should be tested in people.

Every week, MSDF lists the latest scientific papers related to MS, with links to the abstracts on PubMed. Of more than 100 new studies published last week, we selected three as editor’s picks.

One study comes from the Italian registry of pediatric MS patients treated with natalizumab. Researchers evaluated 101 boys and girls. Natalizumab was safe, well tolerated, and effective, they report. Time on the drug varied, but the overall mean was about three years. Most of the patients switched because of a poor response to first-line drugs, such as interferon-beta and glatiramer acetate. The patients’ sera were assessed for anti-JC virus antibodies to prevent the rare but dangerous brain infection associated with natalizumab.

Two other studies caught our eye this week. One goes into the new insights from live imaging in the central nervous systems of mice. The authors outline potential applications that could lead to therapies to protect or restore myelin. Another study asked if spasticity of lower limbs could be helped with anodal transcranial direct current stimulation in 20 MS patients. The answer is no, based on the results of the small randomized double-blind clinical trial. This is not to be confused with another noninvasive technique that seems to reduce spasticity, called transcranial magnetic stimulation.

Our Drug-Development Pipeline contains 44 investigational and approved agents for MS. Last week, we added an extensive meta-analysis of clinical trials, we updated information on three trials, and we added 16 other pieces of information. The drugs with important additions are alemtuzumab, daclizumab, dimethyl fumarate, fingolimod, glatiramer acetate, GNbAC1, interferon beta-1a, interferon beta-1b, laquinimod, mitoxantrone, natalizumab, ocrelizumab, and teriflunomide.

One update reflects the finding that ocrelizumab slows disease progression in primary progressive MS, the first drug to do so, as described in the drug-maker’s news release. Another update reflects a meta-analysis by the Cochrane Multiple Sclerosis group. It compares 39 different clinical trials involving more than 25,000 patients to rank benefits and acceptability of 15 different MS drugs. Doctors and patients need even better information to make decisions, the authors conclude. They call for more randomized studies directly comparing active agents, no more placebo-controlled studies, and long-term followup of all drug studies.

The MSDF team is attending this week’s ECTRIMS meeting in Barcelona, Spain. If you, too, will be at the conference and would like to meet with us – or if you’re interested in being interviewed about your research for a future podcast – please email us at editor@msdiscovery.org.

[transition music]

And now to our interview with Dr. Michael Levy, assistant professor of neurology at Johns Hopkins University. We met in his office to talk about stem cell regenerative therapies – what the aims are and where things stand.

Interviewer – Dan Keller

Let's talk about regenerative stem cell therapies, but I suppose the first thing to make clear is nothing is approved yet, is that right?

Interviewee – Michael Levy

Nothing is even closed to being approved. There are many trials in progress in multiple sclerosis and in spinal cord injury, which is a related demyelinating condition in which stem cells are being tested, and this is worldwide, probably over 20 studies that are ongoing.

MSDF

What are some of the goals?

Dr. Levy

The goals are twofold. In multiple sclerosis in particular, the two goals are to recover function and to neuroprotect against future insults. So in spinal cord injury, for example, there's only one goal which is recovery of function, because they don't have to worry about future insults.

MSDF

Now no one really has the exact idea, or I guess there's many ideas, of how these would work – whether the cells would actually replace lost cells, whether there's secreted trophic factors – so are people looking at them specifically in those areas, or whatever works at this time, then they'll figure out why?

Dr. Levy

It certainly started off with the mechanism in mind that the cells would replace lost tissue. That was really how things started. But as they've evolved, patients have responded in part to many different types of stem cell therapies, and none of them have involved replacing lost tissue. And so there are probably many different mechanisms involved, and it's evolved into exactly what you've described, a phenomenon of wow, this really works, let's continue it and let's try to figure out what's going on in parallel.

MSDF

Is there also a thought that the stem cells really are just providing a supportive environment, or even a supportive structure, for natural processes to proceed if they have the right setting?

Dr. Levy

Oh, sure. There are some studies where the stem cells only survive, or are only around, detectable, for about one hour, and then beyond that they can't be detected, but yet they provide some significant long-lasting benefits. So exactly how they do that is not clear.

MSDF

Are you familiar with the mouse experiments of Jeanne Loring at Scripps; she had taken human pluripotent stem cells in a mouse model and they were gone after a week, but then the mice got up and walked around and seemed to look perfectly normal.

Dr. Levy

So definitely mouse models have recapitulated what we've seen in humans, which is that the stem cells provide some sort of benefit. Whether it's secretion of trophic factors, or neuroprotection or replacement of tissue, or what they call neural bridging, allowing neurons to communicate through in the alternative circuit, this is true in mice, too. So whatever is happening in humans is probably also going on in these mice.

MSDF

Specifically in the MS area, what are people or companies doing?

Dr. Levy

Specifically in MS, the most common trial that's being conducted now is testing mesenchymal stem cells--taking them from that patient, usually from the hip, purifying them in the lab, and then injecting them back into the patient, either into the bloodstream or into the spinal fluid. Initially, the goal was to try to replace lost tissue, but now the goal has evolved, and what these studies are really looking for is sort of the 6-month or 12-month outcome to see if patients recover better, have fewer relapses, and better outcomes.

MSDF

Now mesenchymal stem cells in themselves are not going to turn into the lost kinds of cells you really want to replace, but they do have immunomodulatory effects, is that right?

Dr. Levy

That's the thought. So mesenchymal stem cells are all the cells in the bone marrow that don't turn into blood cells, either red or white blood cells; it's the rest of the matrix. And in the lab, you can turn them into neuronal cells and supportive cells that you find in the brain, but that doesn't happen when you put them into spinal cord or brain; they don't tend to differentiate into neural tissue. And so they are doing something else, and part of that is probably neuromodulatory. Correct.

MSDF

Besides mesenchymal stem cells, people are looking at a little more differentiated cells, oligodendroglial precursor cells--you obviously want to remyelinate. Do you have an idea of what's going on with those and has there been success there?

Dr. Levy

So all the studies using neural stem cells and neuroglial stem cells are currently being conducted in spinal cord injury. And in spinal cord injury there is a component of demyelination, and they're hoping that those oligos migrate to that area that is demyelinated and that it will remyelinate the lesion. So all MS patients should keep an eye on those studies to see how those turn out.

MSDF

The difference there is you can identify an area of lesion. In the brain, you don't know exactly where lesions are going to come up, and lesions disappear also.

Dr. Levy

MS patients tend to have dozens of lesions, and many could be in the same pathway. So even if you remyelinate one, there could be one upstream or downstream of that lesion that's still impairing the function. In spinal cord injury, there is just one lesion, and they're trying to remyelinate just that one; you're correct about that.

MSDF

Are you familiar with the work by Basil Sharrack in England? There were about 10 patients, I think. They did myeloablative therapy and autologous bone marrow transplants, essentially as they called it, rebooting the immune system. That's obviously a stem cell therapy in a sense.

Dr. Levy

Absolutely, it is a stem cell therapy. The thought there is – exactly like you said – rebooting the immune system; taking out only the most immature stem cells that haven't been exposed to whatever the trigger of their disease was, taking those stem cells out and sparing them, holding them in the lab, then getting rid of the rest of the immune system in the patient's body and reintroducing those stem cells back; as you said, rebooting the immune system to see if we could return their immune system back to the pre-MS state and see if that has a better outcome. And, generally, those types of studies where we're really ablating the immune system have tended to have good outcomes; some patients are able to come off of therapy for years, but ultimately the disease comes back. And it could be years; it could be five, even up to ten years. And so we really have to understand why that is. If there's another environmental exposure or if there is just something really genetically encoded into the immune cells.

MSDF

Or, for example, if there's an EBV etiology, the Epstein-Barr virus is still there probably

Dr. Levy

That's right, so EBV may be that environmental trigger.

MSDF

One thing I don't understand about that is they reported, I think, in Science Translational Medicine, that people who had pretty significant disability – you know, using a wheelchair – could then walk again. It seems rebooting the immune system should not do anything to reverse or restore neural function.

Dr. Levy
That would be my expectation, too. So in any study where we're looking at effects on the immune system, I wouldn't expect the nervous system to have such a dramatic recovery either. That was a surprise.

MSDF

What else is there to say about stem cell therapy's messages to physicians who are asked about it, messages to patients who are interested in it at this point?

Dr. Levy

At this point, I would say that the verdict is still out, that the studies need to be completed, and that there are a lot of companies out there offering "stem cell therapies" to patients with MS, who are just looking for anything to improve their function. And that can be dangerous, because we don't really understand this science works, and there have been some bad outcomes reported in the literature from patients who are seeking this type of care from clinics offering "stem cell therapies." And I would just caution patients and caution doctors to wait until these studies are done and we have a better sense of how they work.

MSDF

There seems to be a lot of fly-by-night operations on the internet and overseas, and things like that, but even with legitimate trials I would guess there could be bad outcomes. What sorts of dangers are there in stem cell therapy?

Dr. Levy

There are two. One is that the stem cells will develop into tumors, because these stem cells are now able to proliferate, that's one of their features. So a concern is that they're going to proliferate uncontrollably into a tumor. And the second concern is that you're reintroducing a foreign cell – in some of the trials they're foreign cells – and that might trigger a relapse. So if you inject it directly into the spinal cord, could you then cause another inflammatory event in the spinal cord targeting those stem cells? So those are the two major concerns.

MSDF

Is there anything important to add, or that we've missed?

Dr. Levy

No, I would say that pretty much covers it.

MSDF

Well, thank you.

[transition music]

Thank you for listening to Episode 55 of Multiple Sclerosis Discovery. This Podcast was produced by the MS Discovery Forum, MSDF, the premier source of independent news and information on MS research. MSDF’s executive editor is Carol Cruzan Morton. Heather McDonald curated the MSDF drug database updates. MSDiscovery.org is part of the nonprofit Accelerated Cure Project for Multiple Sclerosis. Robert McBurney is our president and CEO, and Hollie Schmidt is vice president of scientific operations.

MSDiscovery.org aims to focus attention on what is known and not yet known about the causes of MS and related conditions, their pathological mechanisms, and potential ways to intervene. By communicating this information in a way that builds bridges among different disciplines, we hope to open new routes toward significant clinical advances.

We’re interested in your opinions. Please join the discussion on one of our online forums or send comments, criticisms, and suggestions to editor@msdiscovery.org.

For Multiple Sclerosis Discovery, I'm Dan Keller.

[outro music]

1