Info

Multiple Sclerosis Discovery: The Podcast of the MS Discovery Forum

Your independent source of news and information on research in multiple sclerosis and related diseases.
RSS Feed
Multiple Sclerosis Discovery: The Podcast of the MS Discovery Forum
2018
April
January


2016
September
August
July
June
May
April
March
February
January


2015
December
November
October
September
August
July
June
May
April
March
February
January


2014
December
November
October
September
August
July
June


All Episodes
Archives
Now displaying: December, 2015
Dec 28, 2015

[intro music]

Host – Dan Keller

Hello, and welcome to Episode Sixty-Three of Multiple Sclerosis Discovery, the Podcast of the MS Discovery Forum. I’m Dan Keller.

We’ve just passed the winter solstice. What better time than the shortest daylight hours of the year to check in with research at the University of British Columbia on sunlight and MS? Today we talk with Dr. Helen Tremlett who is exploring sun exposure over a person’s life course and how that syncs with their MS risk and disease course.

In the weekly papers section on the MS Discovery Forum, this week’s list includes nearly 150 newly published research reports that could lead to better understanding and treatment of MS and related disorders.

We selected four papers as editor’s picks. In one paper, researchers think they may have the first experimental evidence that MS may start with damage or loss of myelin-making cells in the brain and spinal cord. In this new mouse model of progressive MS, experimentally damaged brain cells make it hard for the mice to walk. The mice recover when their brain cells repair on their own. Six months later, the MS-like disease returns. In the study, the team showed that nanoparticles targeting the autoimmune reaction prevent the second phase of the disease. The study shows support for an “inside-out” model of MS. That’s different from the “outside-in” model, in which some aspect about the immune system goes wrong and then initiates the attack on myelin-making cells. The paper is published in Nature Neuroscience by collaborating researchers from Northwestern University and the University of Chicago.

To grow and be healthy, all human cells need a signaling molecule named mTOR, named for the mammalian target of rapamycin. That’s true for myelin-making cells, or oligodendrocytes, as listeners may remember from an earlier podcast interview with Dr. Wendy Macklin. The ability to make myelin seems to depend on a key part known as mTOR complex 1, also called its raptor subunit. In a very basic advance, scientists have determined the atomic architecture of the raptor, or mTORC1, piece. The details are reported in the journal Science and provide a structural basis for studying mTORC1 function.

In another editor’s pick, a review of cases of pediatric neuromyelitis optica, or NMO, showed that new international diagnostic guidelines applied well to children. Unfortunately, they also found that children with NMO have delayed treatment and worse short-term outcomes compared to those with MS. The authors urged immediate adoption of the guidelines to select the best treatment and improve outcomes.

In the fourth editor’s pick, researchers found a potential new target to protect axons in a mouse model of neurodegeneration in multiple sclerosis. The target is a pore in the mitochondria, the cellular battery that provides energy. They designed a molecule to block the pore and showed it helped protect neurons and improved the mice’s mobility, all with minimal immunosuppression. The paper by mostly UK researchers is published in the Journal of Biological Chemistry.

Now, let’s take a look at the latest Drug Development Pipeline updates. The drugs with important additions and changes are dimethyl fumarate, fingolimod, glatiramer acetate, natalizumab, and rituximab. One update reflects findings from post-hoc analysis of clinical trial data showing that the positive effects of fingolimod are apparent quite soon –within months – after initiation of treatment.

[transition music]

And now to our interview. I spoke with Professor Helen Tremlett, Canada research chair in neuroepidemiology and multiple sclerosis at the University of British Columbia when we were at the ECTRIMS conference in Barcelona in October. She has been studying sun exposure over the course of the lifetime and its relation to MS risk. While MS may affect an individual's likelihood to go out in the sun, studies may also need to consider the influence of sun exposure before the disease develops.

Interviewer – Dan Keller

What are you doing in this area?

Interviewee – Helen Tremlett

So I was presenting at ECTRIMS yesterday on a really interesting study based out of the Nurses' Health Study, and this was a collaboration from my group in Vancouver and Harvard School of Public Health; and that's Alberto Ascherio's group and Sandy Munger. So we were looking at sun exposure over the life course and associations with multiple sclerosis. So here we were looking at both aspects of the spectrum, if you can imagine; we were looking at sun exposure and future risk of multiple sclerosis, but also once an individual has developed multiple sclerosis, we were looking at the impact that potentially has on an individual in terms of their propensity to go outdoors in the daylight hours, outdoors in the sun.

MSDF

Right. So it may be the cart is before the horse in that sense; not that sun exposure is causing it, but their disability is causing less sun exposure?

Dr. Tremlett

We were looking at both sides of the equation. And I think it is important, particularly in a disease such as MS where onset of MS is a little bit fuzzy, I think, to look at sun exposure of the life course is important, and certainly our findings are indicating that. Because you want to know sunlight exposure in MS risk, but you also want to know, once someone's developed multiple sclerosis, how that influences their behavior outdoors and what implications that has if you're then trying to design the study to look at what causes MS.

You need to be really careful who you recruit, because if that person has already changed their behavior, then that may influence your findings, and you're not then actually looking at what causes MS at all, you're just looking at a consequence of the disease. So I guess that's the first part of why we wanted to do that.

And the second part is if having MS, if having a chronic condition, does influence your propensity or ability or desire to go outside, what consequence could that have for your health in terms of maybe your serum vitamin D levels or your melatonin levels, and that may have a consequence in terms of long-term health.

MSDF

You segmented people by where they were and at what ages.

Dr. Tremlett

It was pretty interesting. So, first of all, over ages 5 to 15, we found there that there was a 48% lower risk of MS for women living in high, relative to low, ambient UVB areas during their sort of childhood and early adolescent years. So that was pretty interesting. But we found, kind of to our surprise because it goes against other studies that are out there, we found that time spent outdoors in summer or winter wasn't significantly associated with MS risk in that age group, 5 to 15 years. But what we didn't realize is that it wasn't until we combined that outdoor behavior with the UVB, then we could see that there was an association. So we found that less time spent outdoors in summer in low ambient UVB areas—that was associated with a two-fold increased risk of multiple sclerosis.

That was an important step for us; I mean, it might, you know, sound obvious to combine those two, but it was an important step because other studies in smaller geographical areas such as Tasmania, or there's a study out of Norway in a small region of Norway, they can find an association between time spent outdoors in summer/winter and MS risk. But I think we couldn't find it in the US, because the US is at such a diversity of latitudes – the study spanned over 14 US states – so it wasn't until we looked at that outdoor behavior in context of ambient UVB that we could find the association.

And then, I suppose, our next step was to look at outdoor behavior over the life course. And this was really interesting, that we found some avoidance behavior was apparent in later life in multiple sclerosis. And maybe that comes as no surprise to people, but I think our numbers are interesting to put a concrete figure on it. So, for instance, by age 50, our MS cases were 60% less likely to report high relative to low outdoor exposure compared to controls, and that was in winter and in summer.

So the bottom line is people with MS, once they have MS, are not going outside as much, so they're not getting that UVB exposure, so potentially they're not making that vitamin D and serum vitamin D. And then the winter exposure's important as well, because potentially they're not getting the same melatonin production and inhibition, and that may have a really important role in terms of immunology, the circadian rhythm and your sleep cycle, which, again, all knocks back into overall health and immunology of MS. And there have been some presentations actually at this conference looking into melatonin and its association with relapses in MS, and that's pretty interesting.

MSDF

There's even some emerging thought that sleep is essential for good brain function in terms of taking out the garbage – glymphatics and things like that. So melatonin disturbances may actually have some further consequences in an inflammatory brain disease.

Dr. Tremlett

And there's some interesting studies, not that we did but others have done, looking at shift work and risk of MS. And shift work may be associated with increased risk of MS. Maybe melatonin ties into that as well.

MSDF

Is there also potentially an effect, besides on vitamin D and melatonin, that sun exposure itself has an effect on the immune system, maybe suppressing it?

Dr. Tremlett

Yeah, modulating it in some way. No, absolutely. We don't really know the mechanism. I mean, the obvious one would be sun on human skin at the right time of year on the right skin color can result in really high levels of serum vitamin D being produced. Sunlight exposure the minute it actually hits the skin surface can have a direct immunomodulatory effect. And then, obvious, sun hitting the eye. Melatonin is one of the pathways in there that may then impact the immune system.

MSDF

Is it possible to make any conclusions or even recommendations at this point?

Dr. Tremlett

No. It's an observational study, and we do actually need to do more analysis on this group of individuals. The main recommendations we could make from this study is informing how to design future studies, and also two things you could take from this in terms of recommendations.

First of all, we saw sun avoidance behavior in individuals once they've developed multiple sclerosis. That's really important because it really means that if you want to look at what is causing MS, do not take serum vitamin D levels or look at skin cancer risk, for instance, in individuals who already have MS, because they've already changed in compare to controls, adding further somehow differences are related to what causes MS, because these individuals have already changed their behavior because they've got a chronic disease. So that's the first statement, which might be a no-brainer for some people, but it's amazing how many studies are still published like that in the MS literature at the moment.

And I suppose the second piece is trying to understand if we are going to do an interventional study, what time period in an individual's life or within a population do you need to target in order to change the course and prevent the disease from occurring? And we're trying to understand that more, looking beyond the window age 5 to 15, look more into adulthood to see if ambient UVB is associated with MS risk later in life and into adulthood. And others have shown that there does seem to be an association even into adulthood, which is exciting because if you do want to do an intervention study, then you haven't necessarily missed the boat because you've not intervened during childhood. But, I mean, the real question is how do you intervene and what with? And that's another topic in itself.

MSDF

We'll leave that for another day. Thank you.

Dr. Tremlett

Thank you very much.

[transition music]

Next week, we'll continue our discussion with Professor Tremlett when she'll talk about her preliminary studies on pediatric MS patients and their gut microbiomes.

Until then, thank you for listening to Episode Sixty-Three of Multiple Sclerosis Discovery. This Podcast was produced by the MS Discovery Forum, MSDF, the premier source of independent news and information on MS research. MSDF’s executive editor is Carol Cruzan Morton. Heather McDonald curated the MSDF drug database updates. Msdiscovery.org is part of the nonprofit Accelerated Cure Project for Multiple Sclerosis. Robert McBurney is our President and CEO, and Hollie Schmidt is Vice President of Scientific Operations.

Msdiscovery.org aims to focus attention on what is known and not yet known about the causes of MS and related conditions, their pathological mechanisms, and potential ways to intervene. By communicating this information in a way that builds bridges among different disciplines, we hope to open new routes toward significant clinical advances.

We’re interested in your opinions. Please join the discussion on one of our online forums or send comments, criticisms, and suggestions to editor@msdiscovery.org.

For Multiple Sclerosis Discovery, I'm Dan Keller.

[outro music]

Dec 21, 2015

Transcript will be available Thursday, 24 Dec

Dec 10, 2015

[intro music]

Host – Dan Keller

Hello, and welcome to Episode Sixty-One of Multiple Sclerosis Discovery, the Podcast of the MS Discovery Forum. I’m Dan Keller.

In this podcast, Dr. Yanming Wang of Case Western Reserve University in Cleveland, Ohio, discusses a solution to the vexing problem of how to track changes in myelin in the brain and spinal cord, a measurement believed to be especially important for new candidate drugs to restore this insulating sheathing around axons.

First, here are some new items in the MS Discovery Forum.

A new data visualization showcases the collaborations among authors who published papers reporting the results of clinical trials in progressive forms of multiple sclerosis in the last 30 years. You can find the network map on msdiscovery.org under “Research Resources.” You can mouse over circles in the graphic to find researchers' names. Click and drag the circles to animate the map and reveal connections.

In research news, a Swedish team took the first steps toward finding potential disease markers in the immune cells of asymptomatic people with MS and with seasonal allergies. The study pinpointed three key proteins that may transform normally protective T cells into ones that attack myelin in the case of MS. The three proteins are transcription factors, which glom on to DNA and control which genes turn on and off. According to data from genome studies, the proteins are more common in genetic regions associated with disease, strengthening the case for their role in MS. Finally, the three proteins act differently in people with immune-related diseases, including multiple sclerosis, according to tests on blood samples. Ultimately, the researchers want to learn if they can detect multiple sclerosis and other autoimmune conditions much earlier.

[transition music]

And now to our interview. MSDF caught up with Dr. Yanming Wang last month at the 2015 World Congress of Neurology meeting in Santiago, Chile. We discussed his solution to what has been a missing link in MS research and practice; that is, how to image myelin -- not just lesions on an MRI, but how to tag the substance itself using a biomarker for molecular imaging called M-E-D-A-S, or "mee-das." Going beyond diagnosis, Dr. Wang told us it may eventually allow clinicians to get a better handle on disease progression and efficacy of treatments.

Interviewer – Dan Keller

You had referred to molecular imaging of myelin as the missing link. Why is this the missing link?

Interviewee – Yanming Wang

Because molecular imaging has really transformed how we practice medicine today, and it has become a standard care for virtually many neurological diseases. However, in multiple sclerosis, there's still no effective imaging technique in place that can help physicians to monitor not just for diagnosis, but also to monitor the disease progression.

MSDF

And would this be useful also in monitoring potential therapies?

Dr. Wang

Exactly. There's a lack of imaging technique that allow people to monitor the drug efficacy, particularly for those drugs that try to repair the myelin damage in the CNS.

MSDF

How would this differ from MRI imaging, what you see there, versus having a radioactive biomarker?

Dr. Wang

Currently, MRI is the commonly used imaging modality in MS, however MRI provides only anatomical information and also detect brain lesions. However, those lesions detected on MRI are not specific for myelin pathology.

MSDF

You do have a compound now, [11C]MeDAS, which would be specific for myelin. Is that right, is it very specific for myelin?

Dr. Wang

Exactly. It's very specific for myelin, because the advantage it has over MRI is that that is truly a molecular imaging modality which uses myelin-specific radiotracers that allow to quantitatively monitor the myelin damage and myelin distribution in the brain. So for this reason, we developed a specific radiotracer that can selectively bind to myelin with high affinity, so that we could directly image the myelin distribution.

MSDF

How quickly does it reach the CNS and you can image?

Dr. Wang

It takes minutes, literally, for the radiotracer to penetrate the BBB and enter the brain, and then the whole process takes only 60 minutes.

MSDF

Can you briefly describe your rat model where you're using lysolecithin as an MS model, and then what you did with your marker?

Dr. Wang

Lysolecithin model is an established model of focal demyelination in the brain, so we used that model to test our compounds to monitor the demyelination and remyelination. So after injection of MeDAS, the compounds could readily enter the brain and selectively bind to the myelin. And then at the peak of the disease, which is a peak of the demyelination, the brain uptake of the compounds is lowest, versus when the brain is recovered, then the brain uptake of the compounds is increased. So this demonstrated the in vivo specificity of the radiotracer for myelin.

MSDF

And you can image myelin on the way down and on the way up; you have this hepatocyte growth factor which causes some remyelination?

Dr. Wang

Right, exactly. In collaboration with my colleague, Bob Miller. So we'd use this imaging modality to see if we can monitor the drug efficacy for remyelination. So we'd give this HGF, which is a growth factor that promotes remyelination, and then we could use this imaging technique just to monitor the increase of remyelination after the drug treatment.

MSDF

Everything right now is in animals. Do you have plans for any human trials?

Dr. Wang

Yes, we are working on this paperwork required by FDA to put these compounds in humans.

MSDF

Is the compound so far nontoxic; it's diamino stilbene, is that right? Does it have any estrogenic effects or other toxic effects?

Dr. Wang

No. We have done systematic toxicity studies and there's any adverse effects in animal models so far.

MSDF

What do you see as the clinical utility of this if it enters the human realm?

Dr. Wang

It's going to be a very powerful tool for diagnosis and prognosis, and also particularly for evaluation of drug efficacy. As you know, currently pharmaceutical companies and academic investigators are all trying to develop new drugs that can repair myelin damage in order to restore the biological functions. However, there's a lack of imaging tools in place that allow them to monitor such myelin repair therapies, and this could provide the missing link for this endeavor.

MSDF

Does PET imaging with this compound correlate at all with what's seen on MRI, especially in a kinetic sense following time course?

Dr. Wang

Well, yes. In the wonderful publication in Annual Neurology a couple years ago, we did demonstrate that this PET imaging technique can be used as an imaging marker that correlates with the disease progression in terms of the severity of the symptoms in animal models, in the EAE models. The EAE rat, for example, its appearance, the relapsing or remitting stage, and that we could use this imaging marker to correlate nicely with the symptoms. And this is one of important application if we put this into clinical use.

MSDF

Is this compound the end-all and be-all, or are you developing others, or have some gone by the wayside for various reasons?

Dr. Wang

This compound, and also this imaging technique, could be used not just only in MS, but can also be used in many other neurological diseases, such as Alzheimer's disease, spinal cord injury, and stroke, for example, because all of these neurological diseases are associated to some degree with the myelin damage.

MSDF

Have we missed anything important, anything to add?

Dr. Wang

Again, I think the imaging technique, particularly molecular imaging technique based on positron emission tomography, is lagged behind in the field of neurological diseases because of the complexities of the brain and the lack of molecular probes that could advance our understanding, also facilitate the drug discovery.

MSDF

I appreciate it. Thank you.

Dr. Wang

Oh, thank you very much then.

[transition music]

MSDF

Thank you for listening to Episode Sixty-One of Multiple Sclerosis Discovery. This Podcast was produced by the MS Discovery Forum, MSDF, the premier source of independent news and information on MS research. MSDF’s executive editor is Carol Cruzan Morton. Heather McDonald curated the MSDF drug database updates. Msdiscovery.org is part of the nonprofit Accelerated Cure Project for Multiple Sclerosis. Robert McBurney is our President and CEO, and Hollie Schmidt is Vice President of Scientific Operations.

Msdiscovery.org aims to focus attention on what is known and not yet known about the causes of MS and related conditions, their pathological mechanisms, and potential ways to intervene. By communicating this information in a way that builds bridges among different disciplines, we hope to open new routes toward significant clinical advances.

We’re interested in your opinions. Please join the discussion on one of our online forums or send comments, criticisms, and suggestions to editor@msdiscovery.org.

For Multiple Sclerosis Discovery, I'm Dan Keller.

[outro music]

1